

Topic 5 Slide 3

PYKC 24-Jan-08

Method 2: Direct Table Lookup

- Store one cycle of sine wave in ROM lookup table
- Two approaches to change output frequency:
 - 1. Use address counter with variable clock frequency
 - 2. Use address adder with fixed clock frequency

- Maximum clock frequency limited by access time of ROM.
- Exploit symmetry of sine wave and store one quadrant
 - reduce size of ROM by a factor of 4

		T - 1-1 -			1)
Method 2:	Direct	i abie	LOOKUP	(Exam	pie)

- Example: Use embedded block RAM (EAB) in 256 x 8 bit configuration to store ¼ cycle of a sine table such that:
 - Mem[K] = 255 * sin (π * K / 512) for K = 0 to 255.

coarse angle α

E3.05 Digital System Design

- Generate the other quadrants by manipulating the address and negating the ROM/RAM values.
- The rule to generate the EAB address '**reflection**' and amplitude negation are:-

addr9	addr8	Address to EAB	Negation
0	0	addr[7:0]	No
0	1	256 – addr[7:0]	No
1	0	addr[7:0]	Yes
1	1	256 – addr[7:0]	Yes

PYKC 24-Jan-08	E3.05 Digital System Design	Topic 5 Slide 5	PYKC 24-Jan-08	E3.05 Digital System Design	Topic 5 Slide 6
Method 2	2: Direct Table Lookup (example	e)	Method	l 3: Two level Table Lookup)
 This works excep Therefore, detect 	ot for N=256 and 768 when addr[7:0] = 0 t this condition and force output to either). r +255 or –255.	Previous metFor fine angu	hod still requires table of size N/4 lar increment, needs very large ta	ble
 Improve speed by Numbers in circle 	e indicate number of pipeline registers at dotted lir	ages.	 Can trade-off tables: 1. Coarse ar 	computational block for ROM size	e by using two
	=0		⊅ storing sir	$n(\alpha)$, where $\alpha = \pi k/(2^*M)$, for k = 0 to M-1	
N 10/ addr[7:0] 8/			 ● 2. Fine angle ¬ storing sir 	e table n(β), where $\beta = \pi k/(2*M*N)$, for k = 0 to N-1	
Idr[9:0] addr8	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$		$\sin(\alpha)$	sin(β)	

(2)

Topic 5 Slide 7

PYKC 24-Jan-08

fine

angle β

Method 3: Two level Table Lookup (con't)

Method 4: Cordic Algorithms

Basic CORDIC Iterations

 $x^{(i+1)} = x^{(i)} - d_i v^{(i)} 2^{-i}$ $v^{(i+1)} = v^{(i)} + d_i x^{(i)} 2^{-i}$ $z^{(i+1)} = z^{(i)} - d_i \tan^{-1} 2^{-i}$ $= z^{(i)} - d_i e^{(i)}$

i	<i>e</i> ^(<i>i</i>) in degrees (approximate)	e ⁽ⁱ⁾ in radians (precise)
0	45.0	0.785 398 163
1	26.6	0.463 647 609
2	14.0	0.244 978 663
3	7.1	0.124 354 994
4	3.6	0.062 418 810
5	1.8	0.031 239 833
6	0.9	0.015 623 728
7	0.4	0.007 812 341
8	0.2	0.003 906 230
9	0.1	0.001 953 123
YKC 24-Jan-08	3	E3.05 Digital System D

CORDIC iteration: In step *i*, we pseudorotate by an angle whose tangent is $d_i 2^{-i}$ (the angle $e^{(i)}$ is fixed, only direction d_i is to be picked)

> Value of the function $e^{(i)} = \tan^{-1}$ 2^{-i} , in degrees and radians, for $0 \le i \le 9$

Example: 30° angle $30.0 \cong 45.0 - 26.6 + 14.0$ -7.1 + 3.6 + 1.8-0.9 + 0.4 - 0.2+0.1= 30.1 Source: Parhami

Topic 5 Slide 15

 $\tan \alpha_i = 2^{-i}$ $\alpha_i = \tan^{-1} 2^{-i}$

i	$\alpha_{\rm I}$	$\tan \alpha_i = 2^{-i}$
0	45.000	1.000
1	26.565	0.500
2	14.036	0.250
3	7.125	0.125
4	3.576	0.0625
5	1.790	0.03125

Basic CORDIC iterations

Only need shifts instead of multiplications.

• We can avoid any multiplication by choosing fixed rotation angles $\pm \alpha_i$

such that:

E3.05 Digital System Design

Why Any Angle Can Be Formed from Our List

Analogy: Paying a certain amount while using all currency denominations (in positive or negative direction) exactly once; red values are fictitious.

\$20 \$10 \$5 \$3 \$2 \$1 \$.50 \$.25 \$.20 \$.10 \$.05 \$.03 \$.02 \$.01

Example: Pay \$12.50

\$20 - \$10 + \$5 - \$3 + \$2 - \$1 - \$.50 + \$.25 - \$.20 - \$.10 + \$.05 + \$.03 - \$.02 - \$.01

Convergence is possible as long as each denomination is no greater than the sum of all denominations that follow it.

Domain of convergence: -\$42.16 to +\$42.16

We can guarantee convergence with actual denominations if we allow multiple steps at some values:

\$20 \$10 \$5 \$2 \$2 \$1 \$.50 \$.25 \$.10 \$.10 \$.05 \$.01 \$.01 \$.01 \$.01

Example: Pay \$12.50

\$20 - \$10 + \$5 - \$2 - \$2 + \$1 + \$.50+\$.25-\$.10-\$.10-\$.05+\$.01-\$.01+ \$.01-\$.01

It can be shown that in hyperbolic CORDIC, convergence is guaranteed only if certain "angles" are used twice.

PYKC 24-Jan-08

E3.05 Digital System Design

Topic 5 Slide 21

Source: Parhami

Using CORDIC in Rotation Mode

$ \begin{aligned} x^{(i+1)} &= x^{(i)} - d_i \ y^{(i)} 2^{-i} \\ y^{(i+1)} &= y^{(i)} + d_i \ x^{(i)} 2^{-i} \\ z^{(i+1)} &= z^{(i)} - d_i \ \tan^{-1} 2^{-i} \\ &= z^{(i)} - d_i \ e^{(i)} \end{aligned} $ Make <i>z</i> converge to 0 by choosing $d_i = \operatorname{sign}(z^{(i)}) $	$x^{(m)} = K(x \cos z - y \sin z)$ $y^{(m)} = K(y \cos z + x \sin z)$ $z^{(m)} = 0$ where $K = 1.646\ 760\ 258\ 121\$
For <i>k</i> bits of precision in results, <i>k</i> CORDIC iterations are needed, because $\tan^{-1} 2^{-i} \cong 2^{-i}$ for large <i>i</i>	Start with $x = 1/K = 0.607\ 252\ 935$ and $y = 0$ to find cos <i>z</i> and sin <i>z</i>
Convergence of z to 0 is possible because e list is more than half the previous one or, eq than the sum of all the angles that follow it	each of the angles in our uivalently, each is less
Domain of convergence is $-99.7^{\circ} \le z \le 99.7^{\circ}$ the angles in our list; the domain contains [-	°, where 99.7° is the sum of all $\pi/2$, $\pi/2$] radians

PYKC 24-Jan-08

Topic 5 Slide 22

Source: Parhami

Compute Sine and Cosine using CORDIC

- Initialise:
 - Z = Z
 - x = 1/K = 0.607252935.....
 - y = 0
- Iterate with $d_i = sign(z_i)$ ٠
- After m rotations,

$$x_m \approx \cos(z)$$

$$y_m \approx \sin(z)$$

$$z_m \approx 0$$

$$y / x \approx \tan(z)$$

Using CORDIC in Vectoring Mode

E3.05 Digital System Design

$ \begin{aligned} x^{(i+1)} &= x^{(i)} - d_i y^{(i)} 2^{-i} \\ y^{(i+1)} &= y^{(i)} + d_i x^{(i)} 2^{-i} \\ z^{(i+1)} &= z^{(i)} - d_i \tan^{-1} 2^{-i} \\ &= z^{(i)} - d_i e^{(i)} \end{aligned} $ Make <i>y</i> converge to 0 by choosing $d_i = -\operatorname{sign}(x^{(i)}y^{(i)}) $	$x^{(m)} = K(x^{2} + y^{2})^{1/2}$ $y^{(m)} = 0$ $z^{(m)} = \underbrace{x}_{0} + \tan^{-1}(y/x)$ where $K = 1.646$ 760 258 121
For <i>k</i> bits of precision in results, <i>k</i> CORDIC iterations are needed, because $\tan^{-1} 2^{-i} \cong 2^{-i}$ for large <i>i</i>	Start with x = 1 and $z = 0to find \tan^{-1} y$
Even though the computation above always can use the relationship $\tan^{-1}(1/y) = \pi/2 - to$ limit the range of fixed-point numbers en	s converges, one – tan ^{–1} y countered

Other trig functions: tan *z* obtained from sin *z* and cos *z* via division; inverse sine and cosine $(\sin^{-1} z \text{ and } \cos^{-1} z)$ discussed later

CORDIC in Vector Mode

- Initialise: z = z, x = x, y = y
- Iterate with $d_i = -sign(x_i y_i)$, which forces y_m towards 0
- ♦ After m rotations,

$$x_{m} = K (x^{2} + y^{2})^{\frac{1}{2}}$$

$$y_{m} = 0$$

$$z_{m} = z + \tan^{-1}(\frac{y}{x})$$

$$K = 1.6467602581 \ 21....$$

Use CORDIC to compute arctan(y)

 \odot

- Initialise:
 - z = 0
 - x = 1
 - y = y
- Iterate with $d_i = -sign(x_i y_i) = -sign(y_i)$
- After m rotations,

$$z_m = \tan^{-1}(y)$$

• Use identity: $\tan^{-1}(1/y) = \pi/2 - \tan^{-1}y$ to limit range of numbers to manageable size

PYKC 24-Jan-08	E3.05 Digital System Design	Topic 5 Slide 25	PYKC 24-Jan-08	E3.05 Digital System Design	Topic 5 Slide 26

 \odot

Bit-parallel iterative CORDIC

Bit-parallel unrolled CORDIC

Bit-serial CORDIC

Practical issues

Universal CORDIC

Summary of Generalized CORDIC Algorithms

Use of Approximating Functions

Convert the problem of evaluating the function f to that of function g approximating f. perhaps with a few pre- and postprocessing operations

Approximating polynomials need only additions and multiplications

Polynomial approximations can be derived from various schemes

The Taylor-series expansion of f(x) about x = a is

$$f(x) = \sum_{i=0 \text{ to } \infty} f^{(i)}(a) (x-a)^{i/j!}$$

The error due to omitting terms of degree > m is:

 $f^{(m+1)}(a + \mu(x - a))(x - a)^{m+1}/(m + 1)!$ $0 < \mu < 1$

Setting a = 0 yields the Maclaurin-series expansion

 $f(x) = \sum_{i=0 \text{ to } \infty} f^{(j)}(0) x^{j/j!}$

and its corresponding error bound:

 $f^{(m+1)}(\mu x) x^{m+1}/(m+1)!$

 $0 < \mu < 1$

Source: Parhami

E3.05 Digital System Design

Topic 5 Slide 35

Some Polynomial Approximations

Func	Polynomial approximation	Conditions
1/ <i>x</i>	$1 + y + y^2 + y^3 + \cdots + y^i + \cdots$	0< <i>x</i> <2, <i>y</i> =1− <i>x</i>
e ^x	$1 + x/1! + x^2/2! + x^3/3! + \cdots + x^i/i! + \cdots$	
ln <i>x</i>	$-y - y^2/2 - y^3/3 - y^4/4 - \cdots - y^i/i - \cdots$	$0 < x \le 2, y = 1 - x$
ln <i>x</i>	$2[z + z^{3/3} + z^{5/5} + \cdots + z^{2i+1/2i+1) + \cdots]$	$x > 0, z = \frac{x-1}{x+1}$
sin <i>x</i>	$x - x^{3/3!} + x^{5/5!} - x^{7/7!} + \dots + (-1)^{i} x^{2^{i+1}/(2i+1)!} + \dots$	
cos x	$1 - x^2/2! + x^4/4! - x^6/6! + \cdots + (-1)^i x^{2i}/(2i)! + \cdots$	
tan⁻¹ <i>x</i>	$x - x^{3/3} + x^{5/5} - x^{7/7} + \dots + (-1)^{i} x^{2i+1/2} + \dots$	−1 < <i>x</i> < 1
sinh <i>x</i>	$x + x^{3/3!} + x^{5/5!} + x^{7/7!} + \cdots + x^{2i+1/(2i+1)!} + \cdots$	
cosh <i>x</i>	$1 + x^{2}/2! + x^{4}/4! + x^{6}/6! + \cdots + x^{2i}/(2i)! + \cdots$	
tanh ⁻¹ x	$x + x^{3/3} + x^{5/5} + x^{7/7} + \cdots + x^{2i+1}/(2i+1) + \cdots$	-1 < <i>x</i> < 1

E3.05 Digital System Design

PYKC 24-Jan-08

(:)

Topic 5 Slide 34

Function Evaluation via Divide-and-Conquer

Let *x* in [0, 4) be the (l+2)-bit significand of a floating-point number or its shifted version. Divide *x* into two chunks x_{H} and x_{L} :

$x = x_{H} + 2^{-t} x_{L}$		
$0 \le x_{H} < 4$	t+2 bits	t bits
$0 \le x_{L} < 1$	<i>I</i> − <i>t</i> bits	
		$x_{\rm H}$ in [0, 4) $\triangle x_{\rm L}$ in [0, 1)

The Taylor-series expansion of f(x) about $x = x_{H}$ is

$$f(x) = \sum_{j=0 \text{ to } \infty} f^{(j)}(x_{H}) (2^{-t}x_{L})^{j/j}!$$

A linear approximation is obtained by taking only the first two terms

$$f(x) \cong f(x_{\rm H}) + 2^{-t} x_{\rm L} f'(x_{\rm H})$$

If *t* is not too large, *f* and/or f' (and other derivatives of *f*, if needed) can be evaluated via table lookup

PYKC 24-Jan-08

E3.05 Digital System Design

Approximation by the Ratio of Two Polynomials

Example, yielding good results for many elementary functions

$$f(x) \cong \frac{a^{(5)}x^5 + a^{(4)}x^4 + a^{(3)}x^3 + a^{(2)}x^2 + a^{(1)}x + a^{(0)}}{b^{(5)}x^5 + b^{(4)}x^4 + b^{(3)}x^3 + b^{(2)}x^2 + b^{(1)}x + b^{(0)}}$$

Using Horner's method, such a "rational approximation" needs 10 multiplications, 10 additions, and 1 division

Source: Parhami			Source: Parhami
Topic 5 Slide 37	PYKC 24-Jan-08	E3.05 Digital System Design	Topic 5 Slide 38

What is a Digital Biquad Filter?

◆ Transfer function:

$$(z) = \frac{a_0 + a_1 z^{-1} + a_2 z^{-2}}{1 + b_1 z^{-1} + b_2 z^{-2}}$$

• This can be rearranged as a difference equation:-

$$y_n = a_0 x_n + a_1 x_{n-1} + a_2 x_{n-2} - b_1 y_{n-1} - b_2 y_{n-2}$$

• This can be generalised to an inner-product calculation:

PYKC 24-Jan-08

Distributed Arithmetic (1)

• Let us express x_k in its 2's complement binary form:

$$x_{k} = -x_{k0} + x_{k1} 2^{-1} + x_{k2} 2^{-2} + \dots + x_{k(B-1)} 2^{-(B-1)}$$

= $-x_{k0} + \sum_{i=1}^{B-1} x_{ki} 2^{-i}$

♦ Then:

$$y = \sum_{k=1}^{N} A_k \left[-x_{k0} + \sum_{i=1}^{B-1} x_{ki} 2^{-i} \right] = -\sum_{k=1}^{N} x_{k0} A_k + \sum_{k=1}^{N} \sum_{i=1}^{B-1} x_{ki} A_k 2^{-i}$$

PYKC 24-Jan-08

Distributed Arithmetic (2)

Bit-Serial Implementation

Use ROM as table lookup

- We can avoid any multiplication by table lookup:
 - Use $(x_{1i}, x_{2i}, x_{3i}, \dots x_{Ni})$ as address to a ROM
 - Store pre-calculated partial product for each line in ROM:

$\Phi(x_{1i}, x_{2i}, x_{3i}, \dots, x_{Ni}) = A_1 x_{1i} + A_2 x_{2i} + A_3 x_{3i} + \dots + A_N x_{Ni}$

• We can calculate y three operations: ROM lookup, shift, add/subtract:

References on CORDIC

- Volder J.E., "The CORDIC trigonometric comuting technique", IRE Trans. Electronic Computing, vol EC-8, 1959.
- Walther J.S., "A unifed algorithm for elementary functions", Spring Joint Computer Conference, 1971.
- Andraka R., "A survey of cordic algorithms for fpga based computers", Proc. Of 6th Int. symp. On FPGA, 1998.
- Par
- Schelin C.W., "Calculator Function Approximation", Am. Math. Monthly, vol.90, 1983.
- Lindlbauer N., "Application of FPGA's to Musical Gesture Communication and Processing", MS thesis, Berkeley, 1999.
- B. Parhami, "Computer Arithmetic", Chapter 22, OUP.

References on Distributed Arithmetic

- Peled and B. Liu, "A New Hardware Realization of Digital Filters", *IEEE Trans. on Acoust., Speech, Signal Processing*, vol. ASSP-22, pp. 456-462, Dec. 1974.
- S. A. White, ``Applications of Distributed Arithmetic to Digital Signal Processing'', *IEEE ASSP Magazine*, Vol. 6(3), pp. 4-19, July 1989.
- "The Role of Distributed Arithmetic in FPGA-based Signal Processing", http://www.xilinx.com/appnotes/theory1.pdf
- "Transposed form FIR Filter", Xilinx App. Notes 219

PYKC 24-Jan-08

E3.05 Digital System Design

Topic 5 Slide 45