About this Topic

Topic 5

Functions Evaluation

Peter Cheung
Department of Electrical \& Electronic Engineering Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/
E-mail: p.cheung@imperial.ac.uk

Sine/Cosine Generation

- Sine and cosine functions - very common in communications and DSP applications
- e.g. modulation, demodulation, FFT, spectral analysis
- We will consider this as an example of system level architecture
- 4 Methods are considered:-
- Recursive evaluation
- Direct Table Lookup
- Two-level table lookup
- CORDIC algorithm
- Sine/Cosine functions generation methods
- Functions generation using polynomial approximation
- Distributed arithmetic
- Constant coefficient filters
- Inner-product computation
$\begin{array}{lll}\text { PYKC 24-Jan-08 } & \text { E3.05 Digital System Design } & \text { Topic } 5 \text { Slide 2 }\end{array}$

Method 1: Recursive Evaluation

- Basic idea: place pole pair on unit circle:

$$
\begin{aligned}
H(z) & =\frac{1}{\left(z-e^{j \omega T}\right) \bullet\left(z-e^{-j \omega T}\right)} \\
& =\frac{z^{-2}}{\left(1-2 \cos \omega T z^{-1}+z^{-2}\right)}
\end{aligned}
$$

- Rewrite as difference equation:

$$
y(n)=2 \cos \omega T \bullet y(n-1)-y(n-2)+x(n-2)
$$

- This will oscillate at frequency ω with $x(n-2)=0$
- Limitations:
- Fixed frequency only
- Amplitude may grow or decay - sensitive to quantization noise
- No quadrature signal (i.e. cosine and sine together)

Method 2: Direct Table Lookup

Method 2: Direct Table Lookup (Example)

- Store one cycle of sine wave in ROM lookup table
- Two approaches to change output frequency:
- 1. Use address counter with variable clock frequency
- 2. Use address adder with fixed clock frequency

- Maximum clock frequency limited by access time of ROM.
- Exploit symmetry of sine wave and store one quadrant
- reduce size of ROM by a factor of 4

Method 2: Direct Table Lookup (example)

- This works except for $\mathrm{N}=256$ and 768 when addr[7:0] $=0$.
- Therefore, detect this condition and force output to either +255 or -255.
- Improve speed by inserting pipeline registers at dotted lines.
- Numbers in circle indicate number of pipeline register stages.

- Example: Use embedded block RAM (EAB) in 256×8 bit configuration to store $1 / 4$ cycle of a sine table such that:
- Mem $[K]=255 * \sin \left(\pi^{*} \mathrm{~K} / 512\right)$ for $\mathrm{K}=0$ to 255 .
- Generate the other quadrants by manipulating the address and negating the ROM/RAM values
- The rule to generate the EAB address 'reflection' and amplitude negation are:-

addr9	addr8	Address to EAB	Negation
0	0	$\operatorname{addr}[7: 0]$	No
0	1	$256-\operatorname{addr}[7: 0]$	No
1	0	$\operatorname{addr}[7: 0]$	Yes
1	1	$256-\operatorname{addr}[7: 0]$	Yes

PYKC 24-Jan-08

Method 3: Two level Table Lookup

- Previous method still requires table of size N/4
- For fine angular increment, needs very large table
- Can trade-off computational block for ROM size by using two tables:
- 1. Coarse angle table
π storing $\sin (\alpha)$, where $\alpha=\pi \mathrm{k} /\left(2^{*} \mathrm{M}\right)$, for $\mathrm{k}=0$ to $\mathrm{M}-1$
- 2. Fine angle table
π storing $\sin (\beta)$, where $\beta=\pi k /\left(2^{*} M^{*} N\right)$, for $k=0$ to $N-1$

Method 3: Two level Table Lookup (con’t)

- Now, compute
- $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
- Requires two multiplies and one add
- Angular resolution now improved to $\pi /\left(2^{*} M^{*} N\right)$, or $4 * M * N$ angles in one cycle
- Further simplification if M is large and $\beta \approx 0$, then
- $\sin (\alpha+\beta) \approx \sin \alpha+\beta \cos \alpha \approx \sin \alpha+\beta \sin (90-\alpha)$
- No need to have the fine angle table
- Requires only one multiply
- Introduces distortion

Method 4: Cordic Algorithms

- CORDIC stands for: COordinate Rotation DIgital Computer
- Invented in 1959 by Jack E. Volder
- Based on the observation :
- Rotate a unit-length vector $(1,0)$ by an angle z
- New vector will be at ($\cos \mathrm{z}, \sin \mathrm{z}$)
- Extended by J.S. Walther in 1971 to compute many functions of interest
- Used in virtually all scientific calculators to compute trigonometric functions!

Rotations and Pseudorotations

If we have a computationally efficient way of rotating a vector, we can evaluate cos, sin, and $\tan ^{-1}$ functions
Rotation by an arbitrary angle is difficult, so use two tricks:

1. Perform psuedorotations that require simpler operations
2. Make up the desired angle z from a set of special angles $z=\alpha^{(1)}+\alpha^{(2)}+\ldots+\alpha^{(m)}$

Rotating a Vector $\left(x^{(n)}, y^{(i)}\right)$ by the Angle $\alpha^{(n)}$

$$
\begin{aligned}
& x^{(i+1)}=x^{(i)} \cos \alpha^{(i)}-y^{(i)} \sin \alpha^{(i)}=\left(x^{(1)}-y^{(i)} \tan \alpha^{(i)}\right)\left(1+\tan ^{2} \alpha^{(i)}\right)^{1 / 2} \\
& y^{(i+1)}=y^{(i)} \cos \alpha^{(i)}+x^{(i)} \sin \alpha^{(i)}=\left(y^{(i)}+x^{(i)} \tan \alpha^{(i)}\right)\left(1+\tan ^{2} \alpha^{(i)}\right)^{1 / 2} \\
& z^{(i+1)}=z^{(i)}-\alpha^{(i)}
\end{aligned}
$$

Recall that $\cos \theta=1 /\left(1+\tan ^{2} \theta\right)^{1 / 2}$
$y^{(i+1)}$
$y^{(i)}$ RYKC 24-Jan-08

Pseudorotating a Vector ($x^{(i)}, y^{(i)}$) by the Angle $\alpha^{(i)}$

$$
\begin{aligned}
& x^{(i+1)}=x^{(1)}-y^{(i)} \tan \alpha^{(i)} \\
& y^{(i+1)}=y^{(1)}+x^{(1)} \tan \alpha^{(1)} \\
& z^{(i+1)}=z^{(1)}-\alpha^{(i)}
\end{aligned}
$$

Pseudorotation: Whereas a real rotation does not change the length $R_{(i)}$ of the vector a pseudorotation step increases its length to

$$
R^{(i+1)}=R^{(i)} / \cos \alpha^{(i)}=R^{(i)}\left(1+\tan ^{2} \alpha^{(i)}\right)^{1 / 2}
$$

A pseudorotation step in CORDIC

E3.05 Digital System Design

Basic CORDIC Iterations

$$
\begin{aligned}
x^{(i+1)} & =x^{(i)}-d_{i} y^{(1)} 2^{-i} \\
y^{(i+1)} & =y^{(i)}+d_{i} x^{(i)} 2^{-i} \\
z^{(i+1)} & =z^{(I)}-d_{i} \tan ^{-1} 2^{-i} \\
& =z^{(I)}-d_{i} e^{(I)}
\end{aligned}
$$

A Sequence of Rotations or Pseudorotations

$$
\begin{aligned}
x^{(m)}= & x \cos \left(\sum \alpha^{(\eta)}\right)-y \sin \left(\sum \alpha^{(\lambda)}\right) \\
x^{(m)}= & y \cos \left(\sum \alpha^{(1)}\right)+x \sin \left(\sum \alpha^{(\lambda)}\right) \\
z^{(m)}= & z-\left(\sum \alpha^{(i)}\right) \\
x^{(m)}= & K\left(x \cos \left(\sum \alpha^{(\lambda)}\right)-y \sin \left(\sum \alpha^{(\lambda)}\right)\right) \\
y^{(m)}= & K\left(y \cos \left(\sum \alpha^{(\lambda)}\right)+x \sin \left(\sum \alpha^{(\lambda)}\right)\right) \\
z^{(m)}= & z-\left(\sum \alpha^{(i)}\right) \\
& \text { where } K=\prod\left(1+\tan ^{2} \alpha^{(1)}\right)^{1 / 2} \text { is } \\
& \text { a constant if angles of rotation } \\
& \text { are always the same, differing } \\
& \text { only in sign or direction }
\end{aligned}
$$

Question: Can we find a set of angles so that any angle can be synthesized from all of them with appropriate signs?

After m real rotations by $\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(m)}$, given $x^{(0)}=$ $x, y^{(0)}=y$, and $z^{(0)}=z$

After m pseudorotations by $\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(m)}$, given $x^{(0)}=$ $x, y^{(0)}=y$, and $z^{(0)}=z$

Basic CORDIC iterations

- We can avoid any multiplication by choosing fixed rotation angles $\pm \alpha_{1}$ such that:

$$
\tan \alpha_{i}=2^{-i}
$$

- Only need shifts instead of multiplications.

$$
\alpha_{i}=\tan ^{-1} 2^{-i}
$$

\mathbf{i}	$\boldsymbol{\alpha}_{\mathbf{I}}$	$\boldsymbol{\operatorname { t a n }} \boldsymbol{\alpha}_{\mathbf{i}}=\mathbf{2}^{-\mathbf{i}}$
0	45.000	1.000
1	26.565	0.500
2	14.036	0.250
3	7.125	0.125
4	3.576	0.0625
5	1.790	0.03125

CORDIC rotation

$$
\begin{aligned}
& x_{i+1}=x_{i}-y_{i} \tan \alpha_{i} \\
& y_{i+1}=y_{i}+x_{i} \tan \alpha_{i} \\
& z_{i+1}=z_{i}-\alpha_{i} \\
& x_{i+1}=x_{i}-d_{i} y_{i} 2^{-i} \\
& y_{i+1}=y_{i}+d_{i} x_{i} 2^{-i} \\
& \alpha_{i}=\tan ^{-1} 2^{-i} \\
& z_{i+1}=z_{i}-d_{i} \alpha_{i} \quad \begin{array}{l}
d_{i} \in\{-1,1\} \\
\text { as determined by son }
\end{array}
\end{aligned}
$$

Choosing the Angles to Force z to Zero

Choosing the signs of the rotation angles in order to force z to 0

- Each CORDIC rotation requires:
- 2 shift operations
- 1 table lookup to find α_{i}
- 3 additions
- By rotating by the same set of angles from table (with + or - signs), the scaling factor K can be pre-calculated and stored in another table.

Geometric interpretation (first 3 rotations)

Why Any Angle Can Be Formed from Our List

Analogy: Paying a certain amount while using all currency denominations (in positive or negative direction) exactly once; red values are fictitious.
\$20 \$10 \$5 \$3 \$2 \$1 \$. 50 \$. 25 \$. 20 \$. 10 \$. 05 \$. 03 \$. 02 \$. 01

Example: Pay \$12.50

Convergence is possible as long as each denomination is no greater than the sum of all denominations that follow it.
Domain of convergence: $\mathbf{- \$ 4 2 . 1 6}$ to $+\$ 42.16$
We can guarantee convergence with actual denominations if we allow multiple steps at some values
\$20 \$10 \$5 \$2 \$2 \$1 \$.50 \$.25 \$. 10 \$. 10 \$. 05 \$. 01 \$. 01 \$. 01 \$. 01
Example: Pay $\$ 12.50$
\$20 - \$10 + \$5 - \$2 - \$2 + \$1 + \$.50+\$.25-\$.10-\$.10-\$.05+\$.01-\$.01+ \$.01-\$. 0
It can be shown that in hyperbolic CORDIC, convergence is guaranteed only if certain "angles" are used twice.

Using CORDIC in Rotation Mode

$x^{(i+1)}=x^{(i)}-d_{i} y^{(i)} 2^{-i}$	$x^{(m)}=K\left(x \cos z-y \sin ^{0} z\right)$
$y^{(i+1)}=y^{(i)}+d_{i} x^{(i)} 2^{-i}$	$y^{(m)}=K(y \cos z+x / \sin z)$
$\left.\begin{array}{rl}z^{(i+1)} & =z^{(I)}-d_{i} \tan ^{-1} 2^{-i} \\ & =z^{(i)}-d_{i} e^{()}\end{array}\right\}$Make z converge to 0 by choosing $d_{i}=\operatorname{sign}\left(z^{(i)}\right)$	$z^{(m)}=0$ where $K=1.646760258121 \ldots$
For k bits of precision in results, k CORDIC iterations are needed, because tan $^{-1} 2^{-i} \cong 2^{-1}$ for large i	Start with $\begin{aligned} & x=1 / K=0.607252935 \\ & \text { and } y=0 \\ & \text { to find } \cos z \text { and } \sin z \end{aligned}$

Convergence of z to 0 is possible because each of the angles in our list is more than half the previous one or, equivalently, each is less than the sum of all the angles that follow it

Domain of convergence is $-99.7^{\circ} \leq z \leq 99.7^{\circ}$, where 99.7° is the sum of all the angles in our list; the domain contains $[-\pi / 2, \pi / 2]$ radians

Compute Sine and Cosine using CORDIC

- Initialise:
- $z=z$
- $x=1 / K=0.607252935 \ldots$...
- $y=0$
- Iterate with $d_{i}=\operatorname{sign}\left(z_{i}\right)$
- After m rotations,

$$
\begin{aligned}
& x_{m} \approx \cos (z) \\
& y_{m} \approx \sin (z) \\
& z_{m} \approx 0 \\
& y / x \approx \tan (z)
\end{aligned}
$$

Using CORDIC in Vectoring Mode

$$
\begin{aligned}
& x^{(i+1)}=x^{(i)}-d_{i} y^{(i)} 2^{-i} \quad \text { Make } y \text { converge to } \quad x^{(m)}=K\left(x^{2}+y^{2}\right)^{1 / 2} \\
& \left.y^{(i+1)}=y^{(i)}+d_{i} x^{(i)} 2^{-i} \quad\right\} \begin{array}{l}
\text { Make } y \text { converge to } \\
0 \text { by choosing }
\end{array} y^{(m)}=0 \\
& z^{(i+1)}=z^{(i)}-d_{i} \tan ^{-1} 2^{-i} \quad d_{i}=-\operatorname{sign}\left(x^{(i)} y^{(i)}\right) \\
& =z^{(1)}-d_{i} e^{(1)} \\
& \text { For } k \text { bits of precision in results, } \\
& k \text { CORDIC iterations are needed } \\
& \text { because tan }{ }^{-1} 2^{-i} \cong 2^{-I} \text { for large } i \\
& y^{(m)}=0 \\
& Z^{(m)}=\underset{0}{\boldsymbol{Z}}+\tan ^{-1}(y / \not \chi) \\
& \text { where } K=1.646760258121 \\
& \text { Start with } \\
& x=1 \text { and } z=0 \\
& \text { to find } \tan ^{-1} y
\end{aligned}
$$

Even though the computation above always converges, one
can use the relationship $\tan ^{-1}(1 / y)=\pi / 2-\tan ^{-1} y$
to limit the range of fixed-point numbers encountered
Other trig functions: $\tan z$ obtained from $\sin z$ and $\cos z$ via division; inverse sine and cosine ($\sin ^{-1} z$ and $\cos ^{-1} z$) discussed later

CORDIC in Vector Mode

- Initialise: $z=z, x=x, y=y$
- Iterate with $d_{i}=-\operatorname{sign}\left(x_{i} y_{i}\right)$, which forces y_{m} towards 0
- After m rotations,

$$
\begin{aligned}
& x_{m}=K\left(x^{2}+y^{2}\right)^{1 / 2} \\
& y_{m}=0 \\
& z_{m}=z+\tan ^{-1}(y / x) \\
& K=1.646760258121 \ldots \ldots
\end{aligned}
$$

Bit-parallel iterative CORDIC

Use CORDIC to compute $\arctan (\mathrm{y})$

- Initialise:
- $z=0$
- $\mathrm{x}=1$
- $y=y$
- Iterate with $\mathrm{d}_{\mathrm{i}}=-\operatorname{sign}\left(\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)=-\operatorname{sign}\left(\mathrm{y}_{\mathrm{i}}\right)$
- After m rotations,

$$
z_{m}=\tan ^{-1}(y)
$$

- Use identity: $\tan ^{-1}(1 / y)=\pi / 2-\tan ^{-1} y$ to limit range of numbers to manageable size

Bit-parallel unrolled CORDIC

Bit-serial CORDIC

Source: Parhami
Circular, linear, and hyperbolic CORDIC.

Practical issues

- For k bits precision at output, only k iterations needed.
- For large value of $i, \tan \left(2^{-1}\right) \approx 2^{-1}$
- Convergence is guaranteed for angles in range:
- $-99.7 \leq z \leq 99.7$ (99.7 being the sum of all angles in table)
- For angles outside this range, use trigonometric rules to convert angle in range.

Universal CORDIC

Directly computes :
\sin
\cos
$\tan ^{-1}$
sinh
cosh
$\tanh ^{-1}$
\times
\div

Also directly computes :
$\tan ^{-1}(y / x)$
$y+x z$
$\sqrt{x^{2}+y^{2}}$
$\sqrt{x^{2}-y^{2}}$
$e^{z}=\sinh z+\cosh z$

Indirectly Computes :
$\tan z=\frac{\sin z}{\cos z}$
$\tanh z=\frac{\sinh z}{\cosh z}$

$$
\cos ^{-1} w=\tan ^{-1} \frac{\sqrt{1-w^{2}}}{w}
$$

$\ln w=2 \tanh ^{-1}\left|\frac{w-1}{w+1}\right|$

$$
\cosh ^{-1}=\ln \left(w+\sqrt{1-w^{2}}\right)
$$

$\log _{b} w=K \times \ln w$

$$
\sinh ^{-1}=\ln \left(w+\sqrt{1+w^{2}}\right)
$$

$w^{t}=e^{t \ln w}$

$$
\sin ^{-1} w=\tan ^{-1} \frac{w}{\sqrt{1-w^{2}}}
$$

$$
\sqrt{w}=\sqrt{(w+1 / 4)^{2}-(w-1 / 4)^{2}}
$$

Use of Approximating Functions

Convert the problem of evaluating the function f to that of function g approximating f, perhaps with a few pre- and postprocessing operations
Approximating polynomials need only additions and multiplications
Polynomial approximations can be derived from various schemes
The Taylor-series expansion of $f(x)$ about $x=a$ is

$$
f(x)=\sum_{j=0 \text { to } \infty} f()(a)(x-a)^{j / j!}
$$

The error due to omitting terms of degree $>m$ is:

$$
f^{(m+1)}(a+\mu(x-a))(x-a)^{m+1} /(m+1)!\quad 0<\mu<1
$$

Setting $a=0$ yields the Maclaurin-series expansion

$$
f(x)=\sum_{j=0 \text { to } \infty} f()(0) x^{j} / j!
$$

and its corresponding error bound:

$$
f^{(m+1)}(\mu x) x^{m+1} /(m+1)!\quad 0<\mu<1
$$

Some Polynomial Approximations

Func	Polynomial approximation	Conditions
$1 / x$	$1+y+y^{2}+y^{3}+\cdots+y^{i}+\cdots$	$0<x<2, y=1-x$
e^{x}	$1+x / 1!+x^{2} / 2!+x^{3} / 3!+\cdots+x^{i} / i!+\cdots$	
$\ln x$	$-y-y^{2} / 2-y^{3} / 3-y^{4} / 4-\cdots-y^{i} / i-\cdots$	$0<x \leq 2, y=1-x$
$\ln x$	$2\left[z+z^{3} / 3+z^{5} / 5+\cdots+z^{2 i+1} /(2 i+1)+\cdots\right]$	$x>0, z=\frac{x-1}{x+1}$
$\sin x$	$x-x^{3} / 3!+x^{5} / 5!-x^{7} / 7!+\cdots+(-1)^{i} x^{2 i+1 /(2 i+1)!+\cdots}$	
$\cos x$	$1-x^{2} / 2!+x^{4} / 4!-x^{6} / 6!+\cdots+(-1)^{i} x^{2 i /}(2 i)!+\cdots$	
$\tan ^{-1} x$	$x-x^{3} / 3+x^{5} / 5-x^{7} / 7+\cdots+(-1)^{i} x^{2 i+1} /(2 i+1)+\cdots$	$-1<x<1$
$\sinh x$	$x+x^{3} / 3!+x^{5} / 5!+x^{7} / 7!+\cdots+x^{2 i+1} /(2 i+1)!+$	
$\cosh x$	$1+x^{2} / 2!+x^{4} / 4!+x^{6} / 6!+\cdots+x^{2 i} /(2 i)!+\cdots$	
$\tanh ^{-1} x$	$x+x^{3} / 3+x^{5} / 5+x^{7} / 7+\cdots+x^{2 i+1} /(2 i+1)+\cdots$	$-1<x<1$

Function Evaluation via Divide-and-Conquer

Let x in $[0,4)$ be the $(I+2)$-bit significand of a floating-point number or its shifted version. Divide x into two chunks x_{H} and x_{L} :

$x=x_{\mathrm{H}}+2^{-t} x_{\mathrm{L}}$	
$0 \leq x_{\mathrm{H}}<4$	$t+2$ bits
$0 \leq x_{\mathrm{L}}<1$	$I-t$ bits

The Taylor-series expansion of $f(x)$ about $x=x_{H}$ is

$$
f(x)=\sum_{j=0 \text { to } \infty} f()\left(x_{H}\right)\left(2^{-t} x_{\mathrm{L}}\right)^{j / j!}
$$

A linear approximation is obtained by taking only the first two terms

$$
f(x) \cong f\left(x_{\mathrm{H}}\right)+2^{-t} x_{\mathrm{L}} f^{\prime}\left(x_{\mathrm{H}}\right)
$$

If t is not too large, f and/or f^{\prime} (and other derivatives of f, if needed) can be evaluated via table lookup

Approximation by the Ratio of Two Polynomials

Example, yielding good results for many elementary functions
$f(x) \cong \frac{a^{(5)} x^{5}+a^{(4)} x^{4}+a^{(3)} x^{3}+a^{(2)} x^{2}+a^{(1)} x+a^{(0)}}{b^{(5)} x^{5}+b^{(4)} x^{4}+b^{(3)} x^{3}+b^{(2)} x^{2}+b^{(1)} x+b^{(0)}}$
Using Horner's method, such a "rational approximation" needs 10 multiplications, 10 additions, and 1 division

What is a Digital Biquad Filter?

- Transfer function

$$
H(z)=\frac{a_{0}+a_{1} z^{-1}+a_{2} z^{-2}}{1+b_{1} z^{-1}+b_{2} z^{-2}}
$$

- This can be rearranged as a difference equation:-
$y_{n}=a_{0} x_{n}+a_{1} x_{n-1}+a_{2} x_{n-2}-b_{1} y_{n-1}-b_{2} y_{n-2}$
- This can be generalised to an inner-product calculation:

$$
y=\left[a_{1} a_{2} \ldots \ldots\right]\left[\begin{array}{c}
x_{1} \\
. . \\
x_{N}
\end{array}\right] \sum_{k=1}^{N} A_{k} x_{k}
$$

Distributed Arithmetic (1)

- Let us express x_{k} in its 2's complement binary form:

$$
\begin{aligned}
x_{k} & =-x_{k 0}+x_{k 1} 2^{-1}+x_{k 2} 2^{-2}+\ldots \ldots+x_{k(B-1)} 2^{-} \\
& =-x_{k 0}+\sum_{i=1}^{B-1} x_{k i} 2^{-i}
\end{aligned}
$$

- Then:

$$
y=\sum_{k=1}^{N} A_{k}\left[-x_{k 0}+\sum_{i=1}^{B-1} x_{k i} 2^{-i}\right]=-\sum_{k=1}^{N} x_{k 0} A_{k}+\sum_{k=1}^{N} \sum_{i=1}^{B-1} x_{k i} A_{k} 2^{-}
$$

Distributed Arithmetic (2)

Use ROM as table lookup

- We can avoid any multiplication by table lookup:
- Use ($\left.x_{1 i}, x_{2 i}, x_{3 i}, \ldots x_{N i}\right)$ as address to a ROM
- Store pre-calculated partial product for each line in ROM:

$$
\Phi\left(x_{1 i}, x_{2 i}, x_{3 i} \ldots, x_{N i}\right)=A_{1} x_{1 i}+A_{2} x_{2 i}+A_{3} x_{3 i}+\ldots \ldots \ldots \ldots+A_{N} x_{N i}
$$

- We can calculate y three operations: ROM lookup, shift, add/subtract:

References on CORDIC

- Volder J.E., "The CORDIC trigonometric comuting technique", IRE Trans. Electronic Computing, vol EC-8, 1959.
- Walther J.S., "A unifed algorithm for elementary functions", Spring Joint Computer Conference, 1971.
- Andraka R., "A survey of cordic algorithms for fpga based computers", Proc. Of 6th Int. symp. On FPGA, 1998.
- Par
- Schelin C.W., "Calculator Function Approximation", Am. Math. Monthly, vol.90, 1983.
- Lindlbauer N., "Application of FPGA's to Musical Gesture Communication and Processing", MS thesis, Berkeley, 1999.
- B. Parhami, "Computer Arithmetic", Chapter 22, OUP.
- Peled and B. Liu, "A New Hardware Realization of Digital Filters", IEEE Trans. on Acoust., Speech, Signal Processing, vol. ASSP-22, pp. 456462, Dec. 1974.
- S. A. White, "Applications of Distributed Arithmetic to Digital Signal Processing", IEEE ASSP Magazine, Vol. 6(3), pp. 4-19, July 1989.
- "The Role of Distributed Arithmetic in FPGA-based Signal Processing", http://www.xilinx.com/appnotes/theory1.pdf
- "Transposed form FIR Filter", Xilinx App. Notes 219

