
Topic 5 Slide 1PYKC 24-Jan-08 E3.05 Digital System Design

Topic 5

Functions Evaluation

Peter Cheung
Department of Electrical & Electronic Engineering

Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/
E-mail: p.cheung@imperial.ac.uk

Topic 5 Slide 2PYKC 24-Jan-08 E3.05 Digital System Design

About this Topic

Sine/Cosine functions generation methods
Functions generation using polynomial approximation
Distributed arithmetic
• Constant coefficient filters
• Inner-product computation

Topic 5 Slide 3PYKC 24-Jan-08 E3.05 Digital System Design

Sine/Cosine Generation

Sine and cosine functions - very common in communications
and DSP applications
• e.g. modulation, demodulation, FFT, spectral analysis

We will consider this as an example of system level
architecture
4 Methods are considered:-
• Recursive evaluation
• Direct Table Lookup
• Two-level table lookup
• CORDIC algorithm

Topic 5 Slide 4PYKC 24-Jan-08 E3.05 Digital System Design

Method 1: Recursive Evaluation

Basic idea: place pole pair on unit circle:

Rewrite as difference equation:

This will oscillate at frequency ω with x(n-2) = 0
Limitations:
• Fixed frequency only
• Amplitude may grow or decay - sensitive to quantization noise
• No quadrature signal (i.e. cosine and sine together)

)cos21(

)()(

1
)(

21

2

−−

−

−

+−
=

−•−
=

zTz

z

ezez
zH

TjTj

ω

ωω

ωΤ

z-plane

)2()2()1(cos2)(−+−−−•= nxnynyTny ω

Topic 5 Slide 5PYKC 24-Jan-08 E3.05 Digital System Design

Method 2: Direct Table Lookup

Store one cycle of sine wave in ROM lookup table
Two approaches to change output frequency:
• 1. Use address counter with variable clock frequency
• 2. Use address adder with fixed clock frequency

Maximum clock frequency limited by access time of ROM.
Exploit symmetry of sine wave and store one quadrant
• reduce size of ROM by a factor of 4

C
T
R

Sine
ROM
Table

(N
entries)

k sine_out

variable clk
fin

fout = fin/N

R
E
G

Sine
ROM
Table

(N
entries)

k sine_out

clk fin

fout = fin*i/N
+

incr. i

Topic 5 Slide 6PYKC 24-Jan-08 E3.05 Digital System Design

Method 2: Direct Table Lookup (Example)

Example: Use embedded block RAM (EAB) in 256 x 8 bit configuration to
store ¼ cycle of a sine table such that:

• Mem[K] = 255 * sin (π * K / 512) for K = 0 to 255.

• Generate the other quadrants by manipulating the address and negating the
ROM/RAM values.

• The rule to generate the EAB address ‘reflection’ and amplitude negation
are:-

addr9 addr8 A ddress to E A B N egation

0 0 addr[7 :0] N o

0 1 256 – addr[7 :0] N o

1 0 addr[7 :0] Y es

1 1 256 – addr[7 :0] Y es

Topic 5 Slide 7PYKC 24-Jan-08 E3.05 Digital System Design

Method 2: Direct Table Lookup (example)

This works except for N=256 and 768 when addr[7:0] = 0.

Therefore, detect this condition and force output to either +255 or –255.

Improve speed by inserting pipeline registers at dotted lines.

Numbers in circle indicate number of pipeline register stages.

EAB storing 1/4
cycle of

sinewave
+1

MUX

G

0

1

MUX

G
0

1

=0

'1'
+1

MUX

G

0

1

addr[9:0]

addr[7:0]

addr8

addr9

8

8

10 8

8

9

N Y

1

1 1

2

1

Topic 5 Slide 8PYKC 24-Jan-08 E3.05 Digital System Design

Method 3: Two level Table Lookup

Previous method still requires table of size N/4
For fine angular increment, needs very large table
Can trade-off computational block for ROM size by using two
tables:
• 1. Coarse angle table

storing sin(α), where α = πk/(2*M), for k = 0 to M-1

• 2. Fine angle table
storing sin(β), where β = πk/(2*M*N), for k = 0 to N-1

coarse
angle α

sin(α)

fine
angle β

sin(β)

Topic 5 Slide 9PYKC 24-Jan-08 E3.05 Digital System Design

Method 3: Two level Table Lookup (con’t)

Now, compute
• sin(α+ β) = sin α cos β + cos α sin β

Requires two multiplies and one add

Angular resolution now improved to π/(2*M*N), or 4*M*N
angles in one cycle

Further simplification if M is large and β ≈ 0, then
• sin(α+ β) ≈ sin α + β cos α ≈ sin α + β sin(90 – α)
• No need to have the fine angle table
• Requires only one multiply
• Introduces distortion

Topic 5 Slide 10PYKC 24-Jan-08 E3.05 Digital System Design

Method 4: Cordic Algorithms

CORDIC stands for: COordinate Rotation DIgital Computer
Invented in 1959 by Jack E. Volder
Based on the observation :

• Rotate a unit-length vector (1,0) by an angle z

• New vector will be at (cos z, sin z)

Extended by J.S. Walther in 1971 to compute many functions of interest
Used in virtually all scientific calculators to compute trigonometric
functions!

Topic 5 Slide 11PYKC 24-Jan-08 E3.05 Digital System Design

Rotations and Pseudorotations

-

If we have a computationally efficient way of rotating a vector, we
can evaluate cos, sin, and tan–1 functions

Rotation by an arbitrary angle is difficult, so use two tricks:

1. Perform psuedorotations that require simpler operations
2. Make up the desired angle z from a set of special angles

z = α (1) + α (2) + . . . + α (m)

Key ideas in CORDIC

COordinate Rotation
DIgital Computer used
this method in 1950s;
modern electronic
calculators also use it

z

(cos z, s in z)

(1, 0)

tan y

(1, y)

–1

start at (1, 0)
rotate by z
get cos z, sin z

start at (1, y)
rotate until y = 0
rotation amount is tan y –1

Source: Parhami

Topic 5 Slide 12PYKC 24-Jan-08 E3.05 Digital System Design

Rotating a Vector (x (i), y (i)) by the Angle α (i)

A pseudorotation step in
CORDIC

x

y
Rotation

Pseudo-
rotation

O

R (i+1)

R (i) (i) α

E (i+1)
E ′ (i+1)

E (i)

 y (i+1)

 x (i+1)

 y (i)

 x (i)

Our strategy: Eliminate the
terms (1 + tan2 α(i))1/2 and
choose the angles α(i)) so
that tan α(i) is a power of 2;
need two shift-adds

x(i+1) = x(i) cos α(i) – y(i) sin α(i) = (x(i) – y(i) tan α(i)) / (1 + tan2 α(i))1/2

y(i+1) = y(i) cos α(i) + x(i) sin α(i) = (y(i) + x(i) tan α(i)) / (1 + tan2 α(i))1/2

z(i+1) = z(i) – α(i)

Recall that cos θ = 1 / (1 + tan2 θ)1/2

Source: Parhami

Topic 5 Slide 13PYKC 24-Jan-08 E3.05 Digital System Design

Pseudorotating a Vector (x (i), y (i)) by the Angle α (i)

A pseudorotation step in
CORDIC

x

y
Rotation

Pseudo-
rotation

O

R (i+1)

R (i) (i) α

E (i+1)
E ′ (i+1)

E (i)

 y (i+1)

 x (i+1)

 y (i)

 x (i)

Pseudorotation: Whereas a real rotation
does not change the length R(i) of the vector,
a pseudorotation step increases its length to:

R(i+1) = R(i) / cos α(i) = R(i) (1 + tan2 α(i))1/2

x(i+1) = x(i) – y(i) tan α(i)

y(i+1) = y(i) + x(i) tan α(i)

z(i+1) = z(i) – α(i)

Source: Parhami

Topic 5 Slide 14PYKC 24-Jan-08 E3.05 Digital System Design

A Sequence of Rotations or Pseudorotations

After m real rotations by
α(1), α(2) , . . . , α(m) , given x(0) =
x, y(0) = y, and z(0) = z

x(m) = x cos(∑α(i)) – y sin(∑α(i))
x(m) = y cos(∑α(i)) + x sin(∑α(i))
z(m) = z – (∑α(i))

x(m) = K(x cos(∑α(i)) – y sin(∑α(i)))
y(m) = K(y cos(∑α(i)) + x sin(∑α(i)))
z(m) = z – (∑α(i))

where K = ∏(1 + tan2 α(i))1/2 is
a constant if angles of rotation
are always the same, differing
only in sign or direction

After m pseudorotations by
α(1), α(2) , . . . , α(m) , given x(0) =
x, y(0) = y, and z(0) = z

α(1)

α(2)

α(3)

Question: Can we find a set of angles so
that any angle can be synthesized from all of
them with appropriate signs?

Topic 5 Slide 15PYKC 24-Jan-08 E3.05 Digital System Design

Basic CORDIC Iterations

CORDIC iteration: In step i, we pseudorotate by
an angle whose tangent is di 2–i (the angle e(i) is
fixed, only direction di is to be picked)

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan –1 2–i

= z(i) – di e(i)

––––––––––––––––––––––––––––––––
i
––––––––––––––––––––––––––––––––
0 45.0 0.785 398 163
1 26.6 0.463 647 609
2 14.0 0.244 978 663
3 7.1 0.124 354 994
4 3.6 0.062 418 810
5 1.8 0.031 239 833
6 0.9 0.015 623 728
7 0.4 0.007 812 341
8 0.2 0.003 906 230
9 0.1 0.001 953 123
––––––––––––––––––––––––––––––––

e(i) in degrees
(approximate)

e(i) in radians
(precise)

Value of the function e(i) = tan–1

2–i, in degrees and radians,
for 0 ≤ i ≤ 9

Example: 30° angle

30.0 ≅ 45.0 – 26.6 + 14.0
– 7.1 + 3.6 + 1.8
– 0.9 + 0.4 – 0.2
+ 0.1

= 30.1 Source: Parhami

Topic 5 Slide 16PYKC 24-Jan-08 E3.05 Digital System Design

Basic CORDIC iterations

We can avoid any multiplication by choosing fixed rotation angles ±αi
such that:

Only need shifts instead of multiplications.
i

i

i
i

−−

−

=

=

2tan

2tan
1α

α

i αI tan αi = 2-i

0 45.000 1.000
1 26.565 0.500
2 14.036 0.250
3 7.125 0.125
4 3.576 0.0625
5 1.790 0.03125

Topic 5 Slide 17PYKC 24-Jan-08 E3.05 Digital System Design

CORDIC rotation

iii

iiii

iiii

zz

xyy

yxx

α
α
α

−=
+=
−=

+

+

+

1

1

1

tan

tan

iiii

i
iiii

i
iiii

dzz

xdyy

ydxx

α−=
+=

−=

+

−
+

−
+

1

1

1

2

2
i

i

i
i

−

−−

=

=

2tan

2tan 1

α

α

criterion someby determinedas

}1,1{−∈id

Topic 5 Slide 18PYKC 24-Jan-08 E3.05 Digital System Design

CORDIC Iteration complexity

Each CORDIC rotation requires:
• 2 shift operations

• 1 table lookup to find αi

• 3 additions

By rotating by the same set of angles from table (with + or - signs), the
scaling factor K can be pre-calculated and stored in another table.

Topic 5 Slide 19PYKC 24-Jan-08 E3.05 Digital System Design

Choosing the Angles to Force z to Zero

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan–1 2–i

= z(i) – di e(i)

–––––––––––––––––––––––––––––––
i z(i) – di e(i) = z(i+1)

–––––––––––––––––––––––––––––––
+30.0

0 +30.0 – 45.0 = –15.0
1 –15.0 + 26.6 = +11.6
2 +11.6 – 14.0 = –2.4
3 –2.4 + 7.1 = +4.7
4 +4.7 – 3.6 = +1.1
5 +1.1 – 1.8 = –0.7
6 –0.7 + 0.9 = +0.2
7 +0.2 – 0.4 = –0.2
8 –0.2 + 0.2 = +0.0
9 +0.0 – 0.1 = –0.1
–––––––––––––––––––––––––––––––

Choosing the signs of the
rotation angles in order to force
z to 0

Source: Parhami
Topic 5 Slide 20PYKC 24-Jan-08 E3.05 Digital System Design

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan –1 2–i

= z(i) – di e(i)

–––––––––––––––––––––––––––––––
i z(i) – di e(i) = z(i+1)

–––––––––––––––––––––––––––––––
+30.0

0 +30.0 – 45.0 = –15.0
1 –15.0 + 26.6 = +11.6
2 +11.6 – 14.0 = –2.4
3 ………….
–––––––––––––––––––––––––––––––

y

x

x ,y

x
–45

+26.6

–14
30

(0) (0)

(10)

x ,y(1) (1)

x ,y(2) (2)

x ,y(3) (3)

The first three of 10
pseudorotations leading from
(x(0), y(0)) to (x(10), 0) in rotating
by +30°.

Geometric interpretation (first 3 rotations)

Source: Parhami

Topic 5 Slide 21PYKC 24-Jan-08 E3.05 Digital System Design

Why Any Angle Can Be Formed from Our List

Analogy: Paying a certain amount while using all currency denominations (in positive or
negative direction) exactly once; red values are fictitious.

$20 $10 $5 $3 $2 $1 $.50 $.25 $.20 $.10 $.05 $.03 $.02 $.01

Example: Pay $12.50
$20 – $10 + $5 – $3 + $2 – $1 – $.50 + $.25 – $.20 – $.10 + $.05 + $.03 – $.02 – $.01

Convergence is possible as long as each denomination is no greater than the sum of all
denominations that follow it.

Domain of convergence: –$42.16 to +$42.16

We can guarantee convergence with actual denominations if we allow multiple steps at
some values:

$20 $10 $5 $2 $2 $1 $.50 $.25 $.10 $.10 $.05 $.01 $.01 $.01 $.01

Example: Pay $12.50
$20 – $10 + $5 – $2 – $2 + $1 + $.50+$.25–$.10–$.10–$.05+$.01–$.01+ $.01–$.01

It can be shown that in hyperbolic CORDIC, convergence is guaranteed only if certain
“angles” are used twice.

Source: Parhami

Topic 5 Slide 22PYKC 24-Jan-08 E3.05 Digital System Design

Using CORDIC in Rotation Mode

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan –1 2–i

= z(i) – di e(i)

For k bits of precision in results,
k CORDIC iterations are needed,
because tan –1 2–i ≅ 2–I for large i

x(m) = K(x cos z – y sin z)
y(m) = K(y cos z + x sin z)
z(m) = 0

where K = 1.646 760 258 121 . . .

Make z converge
to 0 by choosing
di = sign(z(i))

0

0

Start with

x = 1/K = 0.607 252 935 . . .

and y = 0
to find cos z and sin z

Convergence of z to 0 is possible because each of the angles in our
list is more than half the previous one or, equivalently, each is less
than the sum of all the angles that follow it

Domain of convergence is –99.7˚ ≤ z ≤ 99.7˚, where 99.7˚ is the sum of all
the angles in our list; the domain contains [–π/2, π/2] radians

Source: Parhami

Topic 5 Slide 23PYKC 24-Jan-08 E3.05 Digital System Design

Compute Sine and Cosine using CORDIC

Initialise:
• z = z

• x = 1/K = 0.607252935…..
• y = 0

Iterate with di = sign(zi)
After m rotations,

)tan(/

0

)sin(

)cos(

zxy

z

zy

zx

m

m

m

≈
≈
≈
≈

Topic 5 Slide 24PYKC 24-Jan-08 E3.05 Digital System Design

Using CORDIC in Vectoring Mode

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan –1 2–i

= z(i) – di e(i)

For k bits of precision in results,
k CORDIC iterations are needed,
because tan –1 2–i ≅ 2–I for large i

x(m) = K(x2 + y2)1/2

y(m) = 0
z(m) = z + tan –1(y /x)

where K = 1.646 760 258 121 . . .

Make y converge to
0 by choosing
di = – sign(x(i)y(i))

0

Start with

x = 1 and z = 0

to find tan –1y

Even though the computation above always converges, one
can use the relationship tan –1(1/y) = π/2 – tan –1y
to limit the range of fixed-point numbers encountered

Other trig functions: tan z obtained from sin z and cos z via division;
inverse sine and cosine (sin –1 z and cos–1 z) discussed later

☺

Topic 5 Slide 25PYKC 24-Jan-08 E3.05 Digital System Design

CORDIC in Vector Mode

Initialise: z = z, x = x, y = y
Iterate with di = -sign(xi yi), which forces ym towards 0
After m rotations,

......216467602581.1

)(tan

0

)(

1

22 2
1

=

+=

=
+=

−

K
x

yzz

y

yxKx

m

m

m

☺

Topic 5 Slide 26PYKC 24-Jan-08 E3.05 Digital System Design

Use CORDIC to compute arctan(y)

Initialise:
• z = 0

• x = 1
• y = y

Iterate with di = -sign(xi yi) = -sign(yi)
After m rotations,

Use identity: tan-1(1/y) = π/2 - tan-1y to limit range of numbers to
manageable size

)(tan 1 yzm
−=

☺

Topic 5 Slide 27PYKC 24-Jan-08 E3.05 Digital System Design

Bit-parallel iterative CORDIC

x(i+1) = x(i) – di y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di tan –1 2–i

= z(i) – di e(i)

If very high speed is not
needed (as in a calculator), a
single adder and one shifter
would suffice

Topic 5 Slide 28PYKC 24-Jan-08 E3.05 Digital System Design

Bit-parallel unrolled CORDIC

Topic 5 Slide 29PYKC 24-Jan-08 E3.05 Digital System Design

Bit-serial CORDIC

Topic 5 Slide 30PYKC 24-Jan-08 E3.05 Digital System Design

Practical issues

For k bits precision at output, only k iterations needed.

For large value of i, tan(2-i) ≈ 2-I

Convergence is guaranteed for angles in range:
• -99.7 ≤ z ≤ 99.7 (99.7 being the sum of all angles in table)

For angles outside this range, use trigonometric rules to convert angle in
range.

Topic 5 Slide 31PYKC 24-Jan-08 E3.05 Digital System Design

Generalized CORDIC

Circular, linear, and hyperbolic CORDIC.

x

y

O

B A

 F

 E

 C

 D

μ = –1 μ = 1 μ = 0

U V W

x(i+1) = x(i) – μdi y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di e(i)

μ = 1 Circular rotations
(basic CORDIC)
e(i) = tan –1 2–i

μ = 0 Linear rotations
e(i) = 2–i

μ = –1 Hyperbolic rotations
e(i) = tanh –1 2–i

Source: Parhami

☺

Topic 5 Slide 32PYKC 24-Jan-08 E3.05 Digital System Design

Universal CORDIC

☺

Topic 5 Slide 33PYKC 24-Jan-08 E3.05 Digital System Design

Universal CORDIC

☺

Topic 5 Slide 34PYKC 24-Jan-08 E3.05 Digital System Design

Summary of Generalized CORDIC Algorithms

For cos & sin, set x = 1/K , y = 0

 tan z = sin z / cos z

For tan , set x = 1, z = 0

–1

For multip lica tion, se t y = 0

For d ivision, se t z = 0

In executing the iterations for = –1, steps 4, 13, 40, 121, . . . , j , 3j + 1, . . .

μ
 must be repeated. These repetitions are incorporated in the constant K' be low.

For cosh & sinh, set x = 1/K', y = 0

tanh z = sinh z / cosh z
 exp(z) = sinh z + cosh z

For tanh , set x = 1, z = 0

–1

w = exp(t ln w)

t

ln w = 2 tanh |(w – 1)/(w + 1)|

–1

Rotation: d = sign(z),

 i

z → 0

(i)

(i)

e =

 = 1
 Circular

tan 2

–i

μ

(i)
 –1

 = –1
 Hyperbo lic

μ

e =

(i)

tanh 2

–i

–1

Mode → Vectoring: d = –sign(x y),

 i

 (i)

 (i)

y → 0

(i)

K(x cos z – y sin z)
 K(y cos z + x sin z)
 0

x
 y
 z

C
O
R
D
I
C

x

y + xz
 0

x
 y
 z

C
O
R
D
I
C

x
 0

 z + y/x

x
 y
 z

C
O
R
D
I
C

K' (x cosh z – y s inh z)
 K' (y cosh z + x s inh z)
 0

x
 y
 z

C
O
R
D
I
C

0
 z + tan (y /x)

–1

x
 y
 z

C
O
R
D
I
C

K √ x + y

2

2

0
 z + tanh (y /x)

–1

x
 y
 z

C
O
R
D
I
C

K' √ x – y

2

 2

cos w = tan [√1 – w / w]

2

–1

–1

s in w = tan [w / √1 – w]

 2

–1

–1

√w = √(w + 1/4) – (w – 1/4)

2

 2

cosh w = ln(w + √ 1 – w)

–1

 2

s inh w = ln(w + √ 1 + w)

–1

 2

Note →

e = 2

 = 0
 Linear

μ

(i)

 –i

x(i+1) = x(i) – μdi y(i) 2–i

y(i+1) = y(i) + di x(i) 2–i

z(i+1) = z(i) – di e(i)

μ ∈ {–1, 0, 1}
di ∈ {–1, 1}

K = 1.646 760 258 121 ...
1/K = .607 252 935 009 ...
K' = .8281593609602 ...
1/K'= 1.207497067763 ...

☺

Topic 5 Slide 35PYKC 24-Jan-08 E3.05 Digital System Design

Use of Approximating Functions

Convert the problem of evaluating the function f to that of function g
approximating f, perhaps with a few pre- and postprocessing operations

Approximating polynomials need only additions and multiplications

Polynomial approximations can be derived from various schemes

The Taylor-series expansion of f(x) about x = a is

f(x) = ∑ j=0 to ∞ f (j) (a) (x – a) j / j!

The error due to omitting terms of degree > m is:

f (m+1) (a + μ(x – a)) (x – a)m+1 / (m + 1)! 0 < μ < 1

Setting a = 0 yields the Maclaurin-series expansion

f(x) = ∑ j=0 to ∞ f (j) (0) x j / j!

and its corresponding error bound:

f (m+1) (μx) xm+1 / (m + 1)! 0 < μ < 1
Source: Parhami

Topic 5 Slide 36PYKC 24-Jan-08 E3.05 Digital System Design

Some Polynomial Approximations

–––
Func Polynomial approximation Conditions
–––

1/x 1 + y + y 2 + y 3 + . . . + y i + . . . 0<x<2, y=1–x

ex 1 + x /1! + x 2/2! + x 3/3! + . . . + x i /i ! + . . .

ln x –y – y 2/2 – y 3/3 – y 4/4 – . . . – y i /i – . . . 0<x≤ 2, y=1–x

ln x 2[z + z 3/3 + z 5/5 + . . . + z 2i+1/(2i+ 1) + . . .] x> 0, z= x–1
x+1

sin x x –x 3/3!+x 5/5!–x 7/7!+ . . . +(–1)i x2i+1/(2i+1)!+ . . .

cos x 1–x 2/2!+x 4/4!–x 6/6!+ . . . +(–1)i x2i/(2i)!+ . . .

tan–1x x –x 3/3+x 5/5–x 7/7+ . . . +(–1)i x2i+1/(2i+1)+ . . . –1 < x < 1

sinh x x+x 3/3!+x 5/5!+x 7/7!+ . . . +x2i+1/(2i+1)!+ . . .

cosh x 1+ x 2/2!+x 4/4!+ x 6/6!+ . . . +x2i/(2i)!+ . . .

tanh–1x x+x 3/3+x 5/5+x 7/7+ . . . + x2i+1/(2i+1)+ . . . –1 < x < 1
–––

Topic 5 Slide 37PYKC 24-Jan-08 E3.05 Digital System Design

Function Evaluation via Divide-and-Conquer

Let x in [0, 4) be the (l +2)-bit significand of a floating-point number or its
shifted version. Divide x into two chunks x H and x L:

x = x H + 2–t x L

0 ≤ xH < 4 t + 2 bits

0 ≤ x L < 1 l – t bits

t bits

x H in [0, 4) x L in [0, 1)

The Taylor-series expansion of f(x) about x = xH is

f(x) = ∑ j=0 to ∞ f (j) (x H) (2–t x L) j / j!

A linear approximation is obtained by taking only the first two terms

f(x) ≅ f (xH) + 2–t x L f′ (xH)

If t is not too large, f and/or f′ (and other derivatives of f, if needed) can be
evaluated via table lookup

Source: Parhami

Topic 5 Slide 38PYKC 24-Jan-08 E3.05 Digital System Design

Approximation by the Ratio of Two Polynomials

Example, yielding good results for many elementary functions

f(x) ≅ a(5)x5 + a(4)x4 + a(3)x3 + a(2)x2 + a(1)x + a(0)

b(5)x5 + b(4)x4 + b(3)x3 + b(2)x2 + b(1)x + b(0)

Using Horner’s method, such a “rational approximation” needs 10
multiplications, 10 additions, and 1 division

Source: Parhami

Topic 5 Slide 39PYKC 24-Jan-08 E3.05 Digital System Design

What is a Digital Biquad Filter?

Transfer function:

This can be rearranged as a difference equation:-

This can be generalised to an inner-product calculation:

2
2

1
1

2
2

1
10

1
)(−−

−−

++
++=

zbzb

zazaa
zH

221122110 −−−− −−++= nnnnnn ybybxaxaxay

1

1 2
1

[......] ..
N

k k
k

N

x

y a a A x

x
=

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

∑

Topic 5 Slide 40PYKC 24-Jan-08 E3.05 Digital System Design

Distributed Arithmetic (1)

Let us express xk in its 2’s complement binary form:

Then:

∑
−

=

−

−−
−

−−

+−=

++++−=
1

1
0

)1(
)1(

2
2

1
10

2

2......22
B

i

i
kik

B
Bkkkkk

xx

xxxxx

∑∑∑∑ ∑
=

−

=

−

==

−

=

− +−=⎥
⎦

⎤
⎢
⎣

⎡
+−=

N

k

B

i

i
kki

N

k
kk

N

k

B

i

i
kikk AxAxxxAy

1

1

11
0

1

1

1
0 22

Topic 5 Slide 41PYKC 24-Jan-08 E3.05 Digital System Design

Distributed Arithmetic (2)

Let us expand this to:

[]
[]
[]

[]
[])1(

)1(3)1(32)1(21)1(1

)2(
)2(3)2(32)2(21)2(1

2
2332222112

1
1331221111

0330220110

2.........

2.........

2.........

2.........

.........

−−
−−−−

−−
−−−−

−

−

+++++

+++++
•

+++++

+++++

++++−=

B
NBNBBB

B
NBNBBB

NN

NN

NN

AxAxAxAx

AxAxAxAx

AxAxAxAx

AxAxAxAx

AxAxAxAxy

LSB of x1 LSB of xN

MSB of xN

Topic 5 Slide 42PYKC 24-Jan-08 E3.05 Digital System Design

Use ROM as table lookup

We can avoid any multiplication by table lookup:
• Use (x1i, x2i, x3i, ... xNi) as address to a ROM

• Store pre-calculated partial product for each line in ROM:

We can calculate y three operations: ROM lookup, shift, add/subtract:

NiNiiiNiiii xAxAxAxAxxxx ++++=Φ)...,,,(332211321

)...,,,(2)...,,,(321

1

1
0302010 Niiii

B

i

i
N xxxxxxxxy Φ+Φ−= ∑

−

=

−

ROM lookup

ShiftingAdd/Sub

Topic 5 Slide 43PYKC 24-Jan-08 E3.05 Digital System Design

Bit-Serial Implementation

f

x

x

x

(i)

(i–1)

(i–2)

j

j

j

y (i–1)
j

y (i–2)
j

LSB-first y (i)

±

Input

32-Entry
 Table
 (ROM)

 Output
 Shift
Register

(m+3)-Bit
 Register

Data Out

Address In

s

Right-Shift

LSB-first
Output

Shift
Reg.

Shift
Reg.

Shift
Reg.

Shift
Reg.

Register
i th

input

(i – 1) th
input

(i – 2) th
input

(i – 1) th
output

i th output
being formed

(i – 2) th
output

Copy at
the end of

cycle

Source: Parhami

Topic 5 Slide 44PYKC 24-Jan-08 E3.05 Digital System Design

References on CORDIC

Volder J.E., “The CORDIC trigonometric comuting technique”, IRE Trans.
Electronic Computing, vol EC-8, 1959.
Walther J.S., “A unifed algorithm for elementary functions”, Spring Joint
Computer Conference, 1971.
Andraka R., “A survey of cordic algorithms for fpga based computers”, Proc. Of
6th Int. symp. On FPGA, 1998.

Par

Schelin C.W., “Calculator Function Approximation”, Am. Math. Monthly, vol.90,
1983.

Lindlbauer N., “Application of FPGA’s to Musical Gesture Communication and
Processing”, MS thesis, Berkeley, 1999.
B. Parhami, “Computer Arithmetic”, Chapter 22, OUP.

Topic 5 Slide 45PYKC 24-Jan-08 E3.05 Digital System Design

References on Distributed Arithmetic

Peled and B. Liu, “A New Hardware Realization of Digital Filters”, IEEE
Trans. on Acoust., Speech, Signal Processing, vol. ASSP-22, pp. 456-
462, Dec. 1974.
S. A. White, ``Applications of Distributed Arithmetic to Digital Signal
Processing'', IEEE ASSP Magazine, Vol. 6(3), pp. 4-19, July 1989.
“The Role of Distributed Arithmetic in FPGA-based Signal Processing”,
http://www.xilinx.com/appnotes/theory1.pdf

“Transposed form FIR Filter”, Xilinx App. Notes 219

